Precast Concrete Sustainability: The Building Envelope

By PCI

Due to its density, concrete has the capacity to absorb and store large quantities of heat, contributing to a high-performance building envelope. Its thermal mass allows concrete to react very slowly to changes in outside temperature to reduce peak heating and cooling loads and delay the time at which these loads occur. The resulting savings can be significant - up to 25% of heating and cooling costs.

Thermal mass and energy savings

ASHRAE STANDARD 90.1 acknowledges the thermal mass benefits of concrete walls in specifying lower minimum insulation R-value and higher maximum wall U-factors for mass (concrete) wall construction.

Research conducted by Oak Ridge National Laboratory compared the dynamic thermal performance of insulated concrete walls with that of a traditional wood frame. Research shows that insulated concrete sandwich walls constructed with composite connector technology utilize the thermal mass effects of concrete to create an “equivalent wall performance R-value” several times greater than a traditional material R-value calculation.

Energy-saving benefits of thermal mass are most pronounced when the outside temperature fluctuates above and below the balance temperature of the building, causing a reversal of heat flow within the wall. The balance point is generally between 50- and 70-degrees Fahrenheit.

These ideal conditions for thermal mass exist on a daily basis at all locations in the United States and Canada.

Another factor affecting the behavior of thermal mass is internal heat gain. This includes heat generated inside the building by lights, equipment, appliances and people; and heat from the sun entering through windows. Generally, during the heating season, benefits of thermal mass increase with the availability of internal heat gains. During the cooling season, thermal mass exposed to the building’s occupied spaces will absorb internal gains, shifting peak cooling periods. Concrete exposed to the interior, not covered by insulation and gypsum wallboard, works best to absorb internal gains, saving cooling energy.

Color

Color (albedo) of precast concrete panels can be used to improve the energy-conserving features of the walls. Panels with high albedo (generally lighter in color) can help reduce the urban heat-island effect. Albedo is the ratio of the amount of solar radiation reflected from a material surface to the amount that shines on the surface.

Generally, materials that appear to be light colored have high albedo and those that appear dark colored have low albedo. On exterior surfaces, high albedo decreases solar heat gain; low albedo increases solar heat gain. A low albedo north wall and high albedo east and west walls and roof form the most energy-conserving arrangement in a northern hemisphere climate that uses both heating and cooling. High albedo surfaces are especially important where cooling dominates the energy requirements. It should be noted, however, that the color of the exterior walls has less affect on energy consumption when the walls have high R-values and thermal mass.

Heat-island effect

Light-colored exterior surfaces also help reduce urban heat-islands. Urban areas are up to seven-degrees Fahrenheit warmer than the surrounding areas. This difference is attributed to more buildings and pavements that have taken the place of vegetation. Where buildings and paved surfaces are required, using materials with higher albedos will reduce the heat-island effect, save energy by reducing the demand for air conditioning, and improve air quality.

Air infiltration

Air infiltration has significant effects on the amount of energy required to heat and cool a building. Large precast concrete panels have minimal joints, reducing uncontrolled air infiltration.

Women in Construction Week: Kristen Heiser

Mid-States Concrete Industries celebrates Women in Construction Week (March 6 – 12) by highlighting women on our team making their mark in the construction industry.

Today we feature Senior Project Designer Kristen Heiser, who has been with Mid-States Concrete for 15 years.

“In high school, I kept rearranging my room and I wanted to rearrange the living room, but my dad wouldn’t let me,” Kristen said. “High school had a board drafting class and that was that. And then it became a computer course, AutoCad 1, and I liked it, so I went for my major in CAD work.”

In her role as Senior Project Designer, Kristen takes contract drawings and then creates shop drawings for our team, which include all the pertinent information they need to appropriately manufacture and install the precast components.

“No two jobs are the same,” Kristen said. “It’s always different. Even similar jobs are not similar… They all have different requirements.”

What Kristen enjoys about precast is that it is always evolving. The buildings are getting bigger, and more complicated. It’s not just straight beams anymore. This is also one of the biggest challenges of her job.

When Kristen reflects back on all the buildings she’s worked on – two stick out. The first is the very first project she ever did for Mid-States. It was a two-story golf clubhouse at a country club and there were no straight lines, everything was angled. And while Kristen worked off of dimensions that were taken in the field by her fellow Mid-States team members, when the pieces got to the site, they didn’t fit. This resulted in tons of section cuts, but in the end the project turned out just fine. Luckily, Kristen’s following projects didn’t have the same issue.

The other project that stands out is St. James Church in Belvidere, because she and her son attend that church. She knew the project was one Mid-States would work on and started asking around, inquiring whether she could serve as the designer on the project. She ended up getting the drawings from the sales team on Ash Wednesday. The project was unique as a formliner was used on the wall panels to match the stone of the then 104-year-old church. It was also one of Mid-States Concrete’s first jobs that used C-GRID, and had the added complexity of the openings for the stained glass windows.

Kristen has grown used to working in a male-dominated field as even early on she was often one of the only women in her classes, but she thrived.

“The guys knew I knew what I was doing and they’d come ask me for help,” she said.

In terms of advice for other women looking to get in to the field: just go for it. If that’s what you like to do, there’s no reason you can’t do it.